Rate this item
(4 votes)

Balinese rice production

Main Contributors:

Caroline Schill, Ylva Ran, Daniel Ospina

Other Contributors:

Reinette (Oonsie) Biggs, -1


As described by Lansing (1991 and others) for roughly a thousand years, rice farming in southern Bali (Indonesia) has operated through a religious and water-irrigation institutional arrangement of Subaks and Water Temples, which coordinate water use and generate landscape-level pest control. During the 1970s, the Indonesian government decided to carry-out a Green Revolution to face the challenge of an increasing internal population demanding more food. Several changes at different levels where introduced: high-yielding varieties of rice were distributed among the farmers, together with a tech-package of pesticides and fertilizers; and the water temples were restricted from regulating water distribution. After a couple of decades of successful increase in production, problems regarding water distribution and pest outbreaks, lead to the recognition of the functional role of Subaks and Water Temples in managing these two factors, so the Indonesian government withdrew the restriction. However, an important percentage of farmers decided to continue using the high-yielding rice varieties, together with pesticides and fertilizers. Given that this agricultural tech-package costs money, the ‘rice production – cash income’ feedback gained strength over ‘rice production – subsistence’, which dominated before the Green Revolution, and was sustained by a variety of agricultural practices that articulated in a more complex form. Cultural and economic dimensions of globalization set the context for this shift, with an increasing importance of money in mediating local social relations, and a slow change in world-views, beliefs and values. Possible negative effects of this farm-level shift in agricultural practices are a fast degradation of soil quality and an increased input of phosphorus to the sea by runoff.

Type of regime shift

  • Unknown

Ecosystem type

  • Tropical Forests

Land uses

  • Small-scale subsistence crop cultivation
  • Tourism

Spatial scale of the case study

  • Local/landscape (e.g. lake, catchment, community)

Continent or Ocean

  • Indian Ocean


  • Southern Bali


  • Indonesia

Locate with Google Map


Key direct drivers

  • Adoption of new technology

Land use

  • Small-scale subsistence crop cultivation
  • Tourism


Ecosystem type

  • Tropical forests
  • Agro-ecosystems

Key Ecosystem Processes

  • Nutrient cycling


  • Biodiversity

Provisioning services

  • Freshwater
  • Food crops

Cultural services

  • Knowledge and educational values

Human Well-being

  • Livelihoods and economic activity

Key Attributes

Spatial scale of RS

  • Local/landscape

Time scale of RS

  • Decades


  • Contemporary observations

Confidence: Existence of RS

  • Speculative – Regime shift has been proposed, but little evidence as yet

Confidence: Mechanism underlying RS

  • Speculative – Mechanisms have been proposed, but little evidence as yet

Alternate regimes

Subsistence-oriented, rice-based livelihood (with organic, self-sufficient farming)

Traditionally, in these Balinese farms rice production based on local rice varieties represents the main economic activity, and it is performed in a 'self-sufficient way' by relying on the articulation of several practices, such as keeping ducks for local pest control and cows for manure (Lansing et al. 2001; Marion et a.l 2005). This articulation of farming activities is time/labour demanding for members of the household, allowing less time for off-farm economic activities.


Market-oriented, diversified livelihood (with agrochemical-dependent farming)

The Green Revolution in Indonesia in the 1970s, presented to Balinese farmers a 'technological packet' including high-yielding rice varieties, chemical fertilizers (nitrogen, potassium and phosphorus) and pesticides (Lansing et al. 2001; Marion et al. 2005). Ever since, some households have replaced some of the labour/time intensive activities traditionally used, with these modern capital intensive inputs. Hence, in this regime household members have to devote less time to within-farm activities, but on the other hand, since access to these inputs requires money, it becomes imperative that an increasing part of their labour/time is devoted to monetized labour (i.e. selling more rice in the market, and/or other economic activities in tourism and commerce, for example).

Drivers and causes of the regime shift

An agricultural credit system developed to promote the use of the 'technological packet' was a key aspect of the Green Revolution in Indonesia enabling the farm-level regime shift in Balinese rice production. To boost rice production, these programs focused on the modernization of the country-side, and the breakdown of traditional management practices (Lansing 2006). This provided the conditions for intimately linking the farming practices to the monetized economy, and as a consequence modifying local livelihoods by allowing/forcing the diversification of economic activities.

Parallel to the increased connection with external markets for agriculture, importance of tourism has continually increased, providing a context for more non-agricultural, off-farm activities (Liater & Me 2003). Further, increased monetary incomes are invested in formal education of younger generations; education which tends to detach them more from agricultural activites (Lorentz & Lorentz, 2010).

How the regime shift worked

In the rice production system of subsistence-orientated rice-based livelihood, the household subsists by ensuring a constant cycle of cultivating and harvesting rice, which depends on both on collective behaviours involving other households, and also within-farm practices. For such practices, members of households in this regime devote most of their time on them, keeping rice production as the economic dominating activity. Under conditions in which such time/labour demanding activities are not 'easily' replaceable, this regime persists.

The agriculture credit system linked to the use of technological packet enabled this replacement. This change both enabled the diversification of economic activities by offering more time flexibility, and demanded an increase in the monetized labour activities. The threshold dividing these two regimes is then related with the importance of money to mediate social and economic interactions on Bali. The increased time flexibility also leads to an increasing access to formal educations, which further leaded to a dominance of non-agricultural economic activities by younger generations, strengthening the trajectory away from the subsistence-orientated rice-based livelihood regime.

Impacts on ecosystem services and human well-being

Both regimes provide rice yields, however the (agro)biodiversity is diminished by the shift described, not only by the adoption of few high-yielding varieties, but also by the effect of pesticides on soil and water habitats. Although the aesthetic value of these landscapes has always been 'provided', the development of infrastructure and training related with tourism increase its perception, and hence its worth in the market-orientated diversified regime.

Management options


Key References

  1. Booth, A. 2002. The Changing Role of Non-Farm Activities in Agricultural Households in Indonesia: Some Insights From the Agricultural Censuses. Bulletin of Indonesian Economic Studies 38, 179-200.
  2. Janssen MA. 2007. Coordination in irrigation systems: An analysis of the Lansing–Kremer model of Bali. Agricultural Systems 93(1-3), 170–190.
  3. Lansing JS, Kremer JN, Gerhart V, Kremer P, Arthawiguna A, Surata SKP, Suryawan SIB, Arsana G, Scarborough VL, Schoenfelder J, Mikita K. 2001. Volcanic fertilization of Balinese rice paddies. Ecological Economics 38, 383–390.
  4. Lansing JS, Miller JH. 2005. Cooperation, games, and ecological feedback: Some insights from Bali. Current Anthropology 46(2), 328–334.
  5. Lansing JS. 1987. Lansing Balinese "Water Temples" and the management of irrigation. American Anthropologist 89, 326–341.
  6. Lansing JS. 1991. Priests and programmers: Technologies of power in the engineered landscape of Bali. Princeton University Press, Princeton.
  7. Lansing, JS, Downey SS, Jannsen M, Schoenfelder J. 2009. A Robust Budding Model of Balinese Water Temple Networks. World Archaeology 41(1), 112–133.
  8. Lietaer B, Meulenaere SD. 2003. Sustaining cultural vitality in a globalizing world: the Balinese example. International Journal of Social Economics 30, 967-984.
  9. Lorenzen RP, Lorenzen S. 2010. Changing realities, perspectives on Balinese rice cultivation. Human Ecology []
  10. Lorenzen S, Lorenzen RP. 2008. Institutionalizing the Informal: Irrigation and government intervention in Bali. Development 51, 77-82.
  11. Marion GS, Dunbar RB, Mucciarone DA, Kremer JN, Lansing JS, Arthawiguna A. 2005. Coral skeletal delta(15)N reveals isotopic traces of an agricultural revolution. Marine pollution bulletin 50, 931-44.
  12. Pesticide action network, Asia and the Pacific (PANAP). 2010. Rice country profile for Indonesia. http://
  13. Poffenberger M, Zurbuchen MS. 1980. The economics of village Bali: three perspectives. Economic development and cultural change 29(1),91-133.
  14. Roche F. 1994. The Technical and Price Efficiency of Fertiliser use in Irrigated Rice Production. Bulletin of Indonesian Economic Studies 30, 59-83.
  15. Scarborough VL, Schoenfelder JW, Lansing JS. 1999. Early statecraft on Bali: the water temple complex and the decentralization of the political economy. Research in Economic Anthropology 20, 299-330.
  16. Scarborough VL, Schoenfelder JW, Lansing JS. 2000. Ancient water management and landscape transformation at Sebatu, Bali. Bulletin of the Indo-Pacific Prehistory Associaton 20, 79-92.
  17. Schmuki A. 2007. The Role of a Global Organization in Triggering Social Learning - Insights from a Case Study of a World Heritage Cultural Landscape Nomination in Bali. Governance An International Journal Of Policy And Administration.
  18. Schoenfelder JW. 2000. The co-evolution of agricultural and sociopolitical systems in Bali. IndoPacific Prehistory Association Bulletin 4, 35-46.


Caroline Schill, Ylva Ran, Daniel Ospina, Reinette (Oonsie) Biggs, -1. Balinese rice production. In: Regime Shifts Database, Last revised 2017-02-07 11:26:51 GMT.
Read 17031 times
Login to post comments